552 research outputs found

    Identical particles and entanglement

    Full text link
    We review two general criteria for deciding whether a pure bipartite quantum state describing a system of two identical particles is entangled or not. The first one considers the possibility of attributing a complete set of objective properties to each particle belonging to the composed system, while the second is based both on the consideration of the Slater-Schmidt number of the fermionic and bosonic analog of the Schmidt decomposition and on the evaluation of the von Neumann entropy of the one-particle reduced statistical operators.Comment: 8 pages; Latex; Talk delivered at the International Conference on Quantum Optics 2004, Minsk, Belaru

    Dynamical Reduction Models with General Gaussian Noises

    Get PDF
    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence.Comment: 22 pages, Late

    Selective cloning of Gaussian states by linear optics

    Full text link
    We investigate the performances of a selective cloning machine based on linear optical elements and Gaussian measurements, which allows to clone at will one of the two incoming input states. This machine is a complete generalization of a 1 to 2 cloning scheme demonstrated by U. L. Andersen et al. [Phys. Rev. Lett. vol. 94, 240503 (2005)]. The input-output fidelity is studied for generic Gaussian input state and the effect of non-unit quantum efficiency is also taken into account. We show that if the states to be cloned are squeezed states with known squeezing parameter, then the fidelity can be enhanced using a third suitable squeezed state during the final stage of the cloning process. A binary communication protocol based on the selective cloning machne is also discussed.Comment: 6 pages, 6 figure

    A critical analysis of Popper's experiment

    Full text link
    An experiment which could decide against the Copenhagen interpretation of quantum mechanics has been proposed by K. Popper and, subsequently, it has been criticized by M.J. Collett and R. Loudon. Here we show that both the above mentioned arguments are not correct because they are based on a misuse of basic quantum rules.Comment: 12 pages, 3 figures, RevTex; to be published on PR

    Conservation laws, uncertainty relations, and quantum limits of measurements

    Get PDF
    The uncertainty relation between the noise operator and the conserved quantity leads to a bound for the accuracy of general measurements. The bound extends the assertion by Wigner, Araki, and Yanase that conservation laws limit the accuracy of ``repeatable'', or ``nondisturbing'', measurements to general measurements, and improves the one previously obtained by Yanase for spin measurements. The bound also sets an obstacle to making a small quantum computer.Comment: 4 pages, RevTex, to appear in PR

    Remarks on a Proposed Super-Kamiokande Test for Quantum Gravity Induced Decoherence Effects

    Full text link
    Lisi, Marrone, and Montanino have recently proposed a test for quantum gravity induced decoherence effects in neutrino oscillations observed at Super-Kamiokande. We comment here that their equations have the same qualitative form as the energy conserving objective state vector reduction equations discussed by a number of authors. However, using the Planckian parameter value proposed to explain state vector reduction leads to a neutrino oscillation effect many orders of magnitude smaller than would be detectable at Super-Kamiokande. Similar estimates hold for the Ghirardi, Rimini, and Weber spontaneous localization approach to state vector reduction, and our remarks are relevant as well to proposed KK meson and BB meson tests of gravity induced decoherence.Comment: 10 pages, plain Tex, no figure

    Active and Passive Quantum Erasers for Neutral Kaons

    Full text link
    Quantum marking and quantum erasure are discussed for the neutral kaon system. Contrary to other two-level systems, strangeness and lifetime of a neutral kaon state can be alternatively measured via an "active" or a "passive" procedure. This offers new quantum erasure possibilities. In particular, the operation of a quantum eraser in the "delayed choice" mode is clearly illustrated.Comment: 17 pages, LaTeX, 1 figure, references added, accepted by Phys. Rev.

    A test of Local Realism with entangled kaon pairs and without inequalities

    Full text link
    We propose the use of entangled pairs of neutral kaons, considered as a promising tool to close the well known loopholes affecting generic Bell's inequality tests, in a specific Hardy-type experiment. Hardy's contradiction without inequalities between Local Realism and Quantum Mechanics can be translated into a feasible experiment by requiring ideal detection efficiencies for only one of the observables to be alternatively measured. Neutral kaons are near to fulfil this requirement and therefore to close the efficiency loophole.Comment: 4 RevTeX page
    corecore